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A Mathematical Approach to 
Digital Sound Production, and 

Musical Interpolation
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Our Focus

� Use of DFT for

• 1) Re-sampling/scaling of audio tracks

• 2) Interpolation of musical notes

• 3) Graphical Equalizer 

� Generation of synthetic audio data

� Digital audio mixing
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Sound

� Properties of sound waves:

� Frequency, wavelength, period, and amplitude

� y(t) = a(t)sin(f(t) x(t))�
• a(t)∈[0,1]

• f(t) = frequency Hz = song(t)

• x(t) = frequency rads/sec = 2πt

� Superposition
• Let wi(t) be a sequence of n wave functions, then

sn(t) = w1(t) + w2(t) + … + wn(t) is the resulting wave

when all n waves occur at the same time.
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Superposition

� Two waveforms and the resulting superposition
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Human Hearing
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Music

� Duration of note determined by time signature, tempo, 

note type

� Time signature: N/D

• There are N notes of type D per bar

• D is a power of two

� Tempo measured in beats per minute or BPM.
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Piano Note Frequencies

� Unit of frequency: hertz (Hz)�

� Base unit of hertz: 2pi rad/s, one complete cycle in one second

� E.g. the A4 note is 440 Hz or 440*2*pi rad/s = 440 sine periods



Math 552 Page 8

Note Frequencies

� Each note is 

approximated by a sine 

wave

� Piano frequency range of 

27.5 Hz to 4186 Hz

� Humans generally able to 

hear between 20 Hz and 

20,000 Hz
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Musical Note Durations

� If a given musical piece is in time signature N/D

and at a tempo of B beats per min. then one D

note lasts 60/B seconds.

• N has little or no bearing on what we are doing here

� Since notes are powers of 2, the above 

information is enough to determine the duration of 

all other note types.

• Suppose D = 4 (a quarter note) and B = 60 BPM; then a 

quarter note lasts 1 second, a half note lasts 2 seconds 

and an eighth note lasts .5 seconds, and so on.
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Digital Sound

� Analog to digital conversion takes place at a certain 

“sampling rate”. CD audio uses a rate of 44.1 kHz for 

instance.

• The number of samples per second defines time increments 

(∆t)

� Each sample has a certain level of accuracy given by the 

number of bits per sample (16 for CD audio).

• The number of bits per sample define amplitude increments 

(∆y)

• For a k bit sample, the possible numeric range is 0 to 2k-1 but 

the range is half devoted to negative amplitudes. 
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Digital Sound Amplitude

� In analog systems, amplitude is measured in dB, but in 

digital systems, the amplitude is a percentage of the 

maximum for the device

• In analog systems recordings of amplitudes in excess of the 

input device’s capabilities manifest as distortion in the 

recording.

• In digital systems, excess amplitude leads to “clipping”

� Clipping means the amplitude went beyond the 

representable range and is left at its maximum or min 

value depending on where it went out of range.

• For instance, if one continues to scale a digital representation

of a sine wave eventually the result is a square wave.
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Digital Sound

� In matlab sound can be played 

with the command:

• sound(vec, r, b)

• takes vec a vector of samples 

(each in the range [-1,1]

• the sample rate r

• bit resolution b

• For CD quality r=44.1 kHz and

b = 16.

� A 1 second sound at rate r is 

represented by a vector with 

length r
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Interpolating Digital Sound

� Why do it

• Record or produce sound at sample rate r to be played on audio 

systems of sample rate kr where k normally a power of 2 or 1/(power 

of two).

• Slow down or speed up an audio sample

• E.g. Re-sample a recording of an A4 piano note to be any other 

note 

• certain error introduced here

• The length of the new note is shorter or longer

� How to do it:

• Interpolation with DFT

• Re-sampling an audio file from rate r to 2r: 
dftinterp(audio_file,2*r)�

• Re-sample note A4 to note A5: 
dftinterp(note_a4,r/2)� 

(done with modified dftinterp)
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Musical Interpolation

� Let sg = [n1 n2 … nk] be a k note song at some 

tempo and time signature and let each ni be a D

note. 

� Each ni is a natural number in the range of 1 to 

50, mapping to a scale on a standard piano. Let 

the notes be in some key, say C major.

� Using round(dftinterp(sg,2*k)) we get a new 

song with twice as many notes and the new 

notes all fall between the original notes

� Let the notes in the new song be 2D notes then 

the two songs have the same duration.
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Musical Interpolation

� The standard piano has 88 keys.

� All the white keys are in the scale of C major.

� Map a song in C major from piano index to C 

major scale index

Above, indexes into the C major scale
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Musical Interpolation

� Example using sg = [24 28 26 31]

• scale_song(sg,2) (make twice as many notes)�

• In the graph nodes with ‘x’ are original notes, ‘o’ are added notes
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Here a 1 bar song (in 4/4) is expanded 
to 4 bars OR could be interpreted as a 
one bar accompaniment.

Notice that the ‘x’ nodes also have circles around them
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Audio Production

� Goals of audio production:

• Mix multiple audio tracks into one “final” track

• Control properties of each audio track so that the 

amplitudes of selected frequency ranges can be 

controlled

• Maximize amplitudes

• Tweak amplitudes of all tracks so that no clipping 

occurs in the final mix
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Audio Mixing

� Using the principle of superposition, audio tracks 

can be added to create a new track wherein both 

original sounds can be heard

� In order to avoid clipping tracks can be averaged

• E.g. s = (s1 + s2)/2

� If some tracks should be louder than others, a 

weighted average can be used: 

• E.g. s = .3s1 + .7s2

� Any track can be made louder or softer by 

scaling by a constant
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Audio Frequency Equalization

� Most people are familiar with the idea of 

increasing the bass and treble of audio

� Bass is a general term referring to the low 

frequency portion of the audio, treble refers to 

the high frequencies

� For high quality audio production, use higher 

granularity; divide the frequency range into n

ranges or “bands”.

� To edit the frequencies directly use a DCT on the 

audio data. The elements in the leftmost part of 

the DCT are low and high in the middle
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Audio Frequency Equalization

� A graph of reference frequencies from 27.5*2k Hz for k = 0 to 9
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Audio Frequency Equalization

� The graph of reference frequencies was created 
by making sound files of sine waves at the 
frequencies 27.5 to 27.5*29 Hz

� The low frequencies appear closest to the right 
and left edges of the graph and the high 
frequencies appear closer to the middle 
[Jesse Hansen, et al, University of Rhode Island]

� The graph shows redundant frequency 
information mirrored across the middle of the 
graph

� The height of the spike shows the amplitude of 
that frequency



Math 552 Page 22

0 2 4 6 8 10 12 14

x 10
4

-1500

-1000

-500

0

500

1000

1500

2000

Audio Frequency Equalization

� To equalize the sound in a slightly 

naive way we can scale the areas 

of the DCT down or up based on 

percentages into the graph.

� To equalize the lowest 

frequencies we might choose 

from .1% to 10% into the graph 

(doing the same for the mirror 

image on the other side)�

� This is “naive” because it doesn’t 

let us select frequency in Hertz, 

although some further 

calculations could be done to 

figure out with percentages map 

to which frequency ranges.

Original frequency graph in blue Altered frequency graph in green

One half of the DFT graph for Vivaldi
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Audio Frequency Equalization

� vivaldi is a high quality audio sample of a few seconds of Vivaldi’s Four 
Seasons, recorded in DDD, uncompressed

� To create the graph in the previous slide:
vivaldi_eq = 

multibandEQ(vivaldi, [.001 .1   .9 (1-.001)], [.2 .2], 44*1024);

� The second two arguments are vectors

• The first vector specifies which percentage ranges to work on

• The second specifies the scaling factor to apply

• A factor of 1 in the second vector will have no effect on the DFT

� In the second vector we set the EQ to work on .1% to 10% of the range and 
90% to 99% (the redundant area)�

� The third vector contains scaling factors which associate directly with the 
ranges, in this case reducing the ranges to 20% of their value

� To make the EQ even nicer we could use an arbitrary discrete graph as a 
diagonal matrix to multiply the DCF by. The way we have it, the graph we 
use is a sequence of constant function.


