
Math 552 Page 1

A Mathematical Approach to
Digital Sound Production, and

Musical Interpolation

Math 552 Page 2

Our Focus

� Use of DFT for

• 1) Re-sampling/scaling of audio tracks

• 2) Interpolation of musical notes

• 3) Graphical Equalizer

� Generation of synthetic audio data

� Digital audio mixing

Math 552 Page 3

Sound

� Properties of sound waves:

� Frequency, wavelength, period, and amplitude

� y(t) = a(t)sin(f(t) x(t))�
• a(t)∈[0,1]

• f(t) = frequency Hz = song(t)

• x(t) = frequency rads/sec = 2πt

� Superposition
• Let wi(t) be a sequence of n wave functions, then

sn(t) = w1(t) + w2(t) + … + wn(t) is the resulting wave

when all n waves occur at the same time.

Math 552 Page 4

Superposition

� Two waveforms and the resulting superposition

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w1 : 1 Hz s2 = w1+w2w2 : 2 Hz

Math 552 Page 5

Human Hearing

Math 552 Page 6

Music

� Duration of note determined by time signature, tempo,

note type

� Time signature: N/D

• There are N notes of type D per bar

• D is a power of two

� Tempo measured in beats per minute or BPM.

Math 552 Page 7

Piano Note Frequencies

� Unit of frequency: hertz (Hz)�

� Base unit of hertz: 2pi rad/s, one complete cycle in one second

� E.g. the A4 note is 440 Hz or 440*2*pi rad/s = 440 sine periods

Math 552 Page 8

Note Frequencies

� Each note is

approximated by a sine

wave

� Piano frequency range of

27.5 Hz to 4186 Hz

� Humans generally able to

hear between 20 Hz and

20,000 Hz

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.03125 seconds of a 440 Hz
wave, an idealized A4 note

Math 552 Page 9

Musical Note Durations

� If a given musical piece is in time signature N/D

and at a tempo of B beats per min. then one D

note lasts 60/B seconds.

• N has little or no bearing on what we are doing here

� Since notes are powers of 2, the above

information is enough to determine the duration of

all other note types.

• Suppose D = 4 (a quarter note) and B = 60 BPM; then a

quarter note lasts 1 second, a half note lasts 2 seconds

and an eighth note lasts .5 seconds, and so on.

Math 552 Page 10

Digital Sound

� Analog to digital conversion takes place at a certain

“sampling rate”. CD audio uses a rate of 44.1 kHz for

instance.

• The number of samples per second defines time increments

(∆t)

� Each sample has a certain level of accuracy given by the

number of bits per sample (16 for CD audio).

• The number of bits per sample define amplitude increments

(∆y)

• For a k bit sample, the possible numeric range is 0 to 2k-1 but

the range is half devoted to negative amplitudes.

Math 552 Page 11

Digital Sound Amplitude

� In analog systems, amplitude is measured in dB, but in

digital systems, the amplitude is a percentage of the

maximum for the device

• In analog systems recordings of amplitudes in excess of the

input device’s capabilities manifest as distortion in the

recording.

• In digital systems, excess amplitude leads to “clipping”

� Clipping means the amplitude went beyond the

representable range and is left at its maximum or min

value depending on where it went out of range.

• For instance, if one continues to scale a digital representation

of a sine wave eventually the result is a square wave.

Math 552 Page 12

Digital Sound

� In matlab sound can be played

with the command:

• sound(vec, r, b)

• takes vec a vector of samples

(each in the range [-1,1]

• the sample rate r

• bit resolution b

• For CD quality r=44.1 kHz and

b = 16.

� A 1 second sound at rate r is

represented by a vector with

length r
0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 second of Vivalidi at 44 kHz, 16bit:
sound(vivaldi,44*1024,16)�

Math 552 Page 13

Interpolating Digital Sound

� Why do it

• Record or produce sound at sample rate r to be played on audio

systems of sample rate kr where k normally a power of 2 or 1/(power

of two).

• Slow down or speed up an audio sample

• E.g. Re-sample a recording of an A4 piano note to be any other

note

• certain error introduced here

• The length of the new note is shorter or longer

� How to do it:

• Interpolation with DFT

• Re-sampling an audio file from rate r to 2r:
dftinterp(audio_file,2*r)�

• Re-sample note A4 to note A5:
dftinterp(note_a4,r/2)�

(done with modified dftinterp)

Math 552 Page 14

Musical Interpolation

� Let sg = [n1 n2 … nk] be a k note song at some

tempo and time signature and let each ni be a D

note.

� Each ni is a natural number in the range of 1 to

50, mapping to a scale on a standard piano. Let

the notes be in some key, say C major.

� Using round(dftinterp(sg,2*k)) we get a new

song with twice as many notes and the new

notes all fall between the original notes

� Let the notes in the new song be 2D notes then

the two songs have the same duration.

Math 552 Page 15

Musical Interpolation

� The standard piano has 88 keys.

� All the white keys are in the scale of C major.

� Map a song in C major from piano index to C

major scale index

Above, indexes into the C major scale

Math 552 Page 16

Musical Interpolation

� Example using sg = [24 28 26 31]

• scale_song(sg,2) (make twice as many notes)�

• In the graph nodes with ‘x’ are original notes, ‘o’ are added notes

0 2 4 6 8 10 12 14 16
24

25

26

27

28

29

30

31

Here a 1 bar song (in 4/4) is expanded
to 4 bars OR could be interpreted as a
one bar accompaniment.

Notice that the ‘x’ nodes also have circles around them

Math 552 Page 17

Audio Production

� Goals of audio production:

• Mix multiple audio tracks into one “final” track

• Control properties of each audio track so that the

amplitudes of selected frequency ranges can be

controlled

• Maximize amplitudes

• Tweak amplitudes of all tracks so that no clipping

occurs in the final mix

Math 552 Page 18

Audio Mixing

� Using the principle of superposition, audio tracks

can be added to create a new track wherein both

original sounds can be heard

� In order to avoid clipping tracks can be averaged

• E.g. s = (s1 + s2)/2

� If some tracks should be louder than others, a

weighted average can be used:

• E.g. s = .3s1 + .7s2

� Any track can be made louder or softer by

scaling by a constant

Math 552 Page 19

Audio Frequency Equalization

� Most people are familiar with the idea of

increasing the bass and treble of audio

� Bass is a general term referring to the low

frequency portion of the audio, treble refers to

the high frequencies

� For high quality audio production, use higher

granularity; divide the frequency range into n

ranges or “bands”.

� To edit the frequencies directly use a DCT on the

audio data. The elements in the leftmost part of

the DCT are low and high in the middle

Math 552 Page 20

0 1 2 3 4 5

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

4

Audio Frequency Equalization

� A graph of reference frequencies from 27.5*2k Hz for k = 0 to 9

k=9k=9

k=8 k=8

k=7 k=7

Math 552 Page 21

Audio Frequency Equalization

� The graph of reference frequencies was created
by making sound files of sine waves at the
frequencies 27.5 to 27.5*29 Hz

� The low frequencies appear closest to the right
and left edges of the graph and the high
frequencies appear closer to the middle
[Jesse Hansen, et al, University of Rhode Island]

� The graph shows redundant frequency
information mirrored across the middle of the
graph

� The height of the spike shows the amplitude of
that frequency

Math 552 Page 22

0 2 4 6 8 10 12 14

x 10
4

-1500

-1000

-500

0

500

1000

1500

2000

Audio Frequency Equalization

� To equalize the sound in a slightly

naive way we can scale the areas

of the DCT down or up based on

percentages into the graph.

� To equalize the lowest

frequencies we might choose

from .1% to 10% into the graph

(doing the same for the mirror

image on the other side)�

� This is “naive” because it doesn’t

let us select frequency in Hertz,

although some further

calculations could be done to

figure out with percentages map

to which frequency ranges.

Original frequency graph in blue Altered frequency graph in green

One half of the DFT graph for Vivaldi

Math 552 Page 23

Audio Frequency Equalization

� vivaldi is a high quality audio sample of a few seconds of Vivaldi’s Four
Seasons, recorded in DDD, uncompressed

� To create the graph in the previous slide:
vivaldi_eq =

multibandEQ(vivaldi, [.001 .1 .9 (1-.001)], [.2 .2], 44*1024);

� The second two arguments are vectors

• The first vector specifies which percentage ranges to work on

• The second specifies the scaling factor to apply

• A factor of 1 in the second vector will have no effect on the DFT

� In the second vector we set the EQ to work on .1% to 10% of the range and
90% to 99% (the redundant area)�

� The third vector contains scaling factors which associate directly with the
ranges, in this case reducing the ranges to 20% of their value

� To make the EQ even nicer we could use an arbitrary discrete graph as a
diagonal matrix to multiply the DCF by. The way we have it, the graph we
use is a sequence of constant function.

