
1 % returns the raw audio of the nth C major note

2 % for the given durration of time

3 % this function could be modified to take the scale as an argument and the

4 % for loop below could extract the necessary frequencies for that scale.

5 % INPUT:

6 % n: the index of the note to play

7 % durr: the duration of the note in seconds

8 function [s,notesCMaj] = note(n,durr)

9 sampleRate = 44*1024;

10 numNotesOnPiano = 88;

11

12 % extracting just the "white keys" on the piano

13 notesCMaj = [];

14 j = 1;

15 for i=4:12:numNotesOnPiano-12

16 notesCMaj(j) = notes(i);

17 notesCMaj(j+1) = notes(i+2);

18 notesCMaj(j+2) = notes(i+4);

19 notesCMaj(j+3) = notes(i+5);

20 notesCMaj(j+4) = notes(i+7);

21 notesCMaj(j+5) = notes(i+9);

22 notesCMaj(j+6) = notes(i+11);

23 j = j + 7;

24 end

25

26 % possible special case for silence (but this doesn't work with music

27 % interpolation because notes whose index is near 0 bear not special

28 % relation to silence because the lowest note on the piano is 27.5 hz,

29 % and silence is 0 Hz.

30 if n == 0

31 f = 0;

32 else

33 f = notesCMaj(n);

34 end

35

36 % generating the piano note as a sound wave with the given frequncy

37 s = snd(f,sampleRate,durr);

38

39 % fade the sound out

40 % this is the same as multiplying by a diagonal matrix whose diagonal is a

41 % discrete linear function

42 for i=1:length(s)

43 s(i) = s(i)*(length(s)-i-1)/length(s);

44 end

45

